DATE

FINAL Study Guide

For Exercises 33-38, solve the equation. Check the solution.

33.
$$3x + 12 = 24$$

34.
$$-7x - 13 = 15$$

35.
$$8-2x=30$$

36.
$$-7 + 9x = 38$$

37.
$$-4-6x=-22$$

38.
$$8x + 17 = -15$$

39. For each part (a)–(f), find the value of *y* when
$$x = -2$$
.

a.
$$y = 3x - 7$$

b.
$$3x - 2y = 10$$

c.
$$7x - 4y = 12$$

d.
$$x = 4y - 2$$

e.
$$3 = 2x - y$$

f.
$$12 = -3x - 4y$$

Write an equation of the line satisfying the given conditions.

40. slope =
$$-4$$
, y-intercept = 3

41. slope =
$$\frac{2}{3}$$
, passes through the point (3, 4)

42. slope =
$$-3$$
, y-intercept = 2

54. Multiple Choice Kaya wants to fence off part of her yard for a garden. She has 150 feet of fencing. She wants a rectangular garden with a length 1.5 times its width. Which system represents these conditions?

$$F. \begin{cases} 1.5w = \ell \\ w + \ell = 150 \end{cases}$$

$$\mathbf{G.} \ \begin{cases} w = 1.5\ell \\ w + \ell = 150 \end{cases}$$

$$\mathbf{H.} \ \begin{cases} 2w = 3\ell \\ w + \ell = 75 \end{cases}$$

J.
$$\begin{cases} 3w = 2\ell \\ 2(w + \ell) = 150 \end{cases}$$

55. Multiple Choice Which equation shows how to find one dimension of the garden described in Exercise 54?

A.
$$2.5w = 150$$

B.
$$2.5\ell = 150$$

C.
$$2w = 3(75 - w)$$

D.
$$5w = 150$$

For Exercises 56-59, write an equation that represents each line on the graph. Then, solve the system of equations symbolically.

56.

57.

59.

Solve each equation for x.

70.
$$5(x+4)-2x=5+6x+2x$$
 71. $2(x+2)-6x=6x+8-2x$

71.
$$2(x+2)-6x=6x+8-2x$$

- 75. Antonia and Marissa both babysit. Antonia charges \$5.50 an hour. Marissa charges a base rate of \$20.00, plus \$.50 an hour.
 - a. For each girl, write an equation showing how the charge depends on babysitting time.
 - b. For what times are Marissa's charges less than Antonia's?
 - c. Is there a time for which Antonia and Marissa charge the same amount?

- **76.** Raj's age is 1 year less than twice Sarah's age. Toni's age is 2 years less than three times Sarah's age.
 - a. Suppose Sarah's age is s years. What is Raj's age in terms of s?
 - **b.** How old is Toni in terms of s?
 - c. How old are Raj, Sarah, and Toni if the sum of their ages is 21?

- 77. Melissa and Trevor sell candy bars to raise money for a class field trip. Trevor sells 1 more than five times as many candy bars as Melissa sells. Together they sell 49 candy bars.
 - a. Let m represent the number of candy bars Melissa sells. Let t represent the number of candy bars Trevor sells. Write a linear system to represent this situation.
 - b. Solve your system to find the number of candy bars each student sells.

ANSWER KEY

33.
$$x = 4$$

34.
$$x = -4$$

35.
$$x = -11$$

36.
$$x = 5$$

37.
$$x = 3$$

38.
$$x = -4$$

39. a.
$$y = -13$$

b.
$$y = -8$$

c.
$$y = -6.5$$

d.
$$y = 0$$

e.
$$y = -7$$

f.
$$y = -1.5$$

40.
$$y = -4x + 3$$

41.
$$y = \frac{2}{3}x + 2$$

42.
$$y = -\frac{3}{1}x + 2$$

43.
$$y = -\frac{3}{4}x + 7\frac{3}{4}$$

56. Red Line:
$$y = x + 3$$

Blue Line: $y = 2x + 2$
 $x = 1$, $y = 4$

57. Red Line:
$$y = -3x - 3$$

Blue Line: $y = 4x + 4$
 $x = -1$, $y = 0$

58. Red Line:
$$y = \frac{1}{2}x + 2$$

Blue Line: $y = 2x - 4$
 $x = 4$, $y = 4$

59. Red Line:
$$y = 3$$
 Blue Line: $x = 5$ $x = 5$, $y = 3$

70.
$$x = 3$$

71.
$$x = -\frac{1}{2}$$

75. a. Antonia:
$$y = 5.5x$$
; Marissa: $y = 20 + 0.5x$

- **b.** Marissa's rate is a better deal for the customer when x > 4 hours.
- **c.** They have the same charge for x = 4 hours.
- **76.** Let R = Raj's age, s = Sarah's age, and T = Toni's age.

a.
$$R = 2s - 1$$

b.
$$T = 3s - 2$$

c.
$$s + (2s - 1) + (3s - 2) = 21$$
 when $s = 4$, $R = 7$, and $T = 10$

77. Let m = the number of candy bars Melissa sells and t = the number of candy bars Trevor sells.

a.
$$\begin{cases} m + t = 49 \\ 5t + 1 = t \end{cases}$$

b. Trevor sold 41 and Melissa sold 8.